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Abstract

Recently, gene set-based approaches have become very popular in gene expression profiling 

studies for assessing how genetic variants are related to disease outcomes. Since most genes are 

not differentially expressed, existing pathway tests considering all genes within a pathway suffer 

from considerable noise and power loss. Moreover, for a differentially expressed pathway, it is of 

interest to select important genes that drive the effect of the pathway. In this article, we propose an 

adaptive association test using double kernel machines (DKM), which can both select important 

genes within the pathway as well as test for the overall genetic pathway effect. This DKM 

procedure first uses the garrote kernel machines (GKM) test for the purposes of subset selection 

and then the least squares kernel machine (LSKM) test for testing the effect of the subset of genes. 

An appealing feature of the kernel machine framework is that it can provide a flexible and unified 

method for multi-dimensional modeling of the genetic pathway effect allowing for both 

parametric and nonparametric components. This DKM approach is illustrated with application to 

simulated data as well as to data from a neuroimaging genetics study.
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1 Introduction

Advances in high-throughout biotechnology over the last decades have culminated in large-

scale genetic association studies, which have facilitated identification of many genetic 

variants associated with a range of complex traits in gene expression profiling experiments. 
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An individual gene analysis approach is useful in identifying disease susceptibility genes. 

However, the major limitations of individual gene-based analysis are as follows. First, 

individual analysis is often too conservative due to multiple testing. Second, results of 

individual analysis are often hard to interpret and not reproducible across studies. Many 

genes found in the discovery phase are false positives and cannot be validated in other 

experiments. This is largely due to the restricted power to detect a small effect that an 

individual gene is truly associated with the outcome. Third, it is unlikely that individual 

genes work in isolation, and it is known that biological phenomena occur through the 

concerted expression of multiple genes. Such joint actions between genes cannot be captured 

in any individual gene analysis. Therefore analysis based on genetic pathways or gene sets 

has become popular recently (Cai et al. 2012; Wu et al. 2010).

The challenge in genetic pathway association studies is how to model and test for a complex 

pathway effect on a disease outcome. Given the fact that the outcome may rely on the 

genetic pathway in a complicated and unknown pattern, nonparametric methods are 

desirable here. Liu et al. (2007) proposed a kernel machine-based semiparametric approach 

for modeling the pathway effects. There are several appealing features of this kernel 

machine framework. First, it provides a nonparametric approach of modeling the pathway 

effect. It allows a flexible function for the joint effect of multiple genes within a pathway by 

specification of a kernel function that allows for nonlinear gene effects as well as complex 

interactions. Second, by taking the correlation between genes into account, kernel machine 

score test have improved power of detecting the pathway effect. Third, the kernel machine 

models can be easily connected with the linear mixed effects models which allows for a 

unified likelihood framework, in which parameter estimation and inference are feasible (Liu 

et al. 2007, 2008; Kwee et al. 2008).

Although the least squares kernel machine (LSKM) test proposed in Liu et al. (2007) enjoys 

those aforementioned benefits, but it has two major disadvantages. First, it is not robust 

against noisy variables. It has been shown that the association signal decreased with adding 

non-associated genetic variants (Wessel and Schork 2006; Wu et al. 2009). The existence of 

noisy variants in the genetic pathway will lower the power for detecting the pathway effect. 

As will be seen in the simulation studies, besides lower power, the LSKM test violates the 

nominal type I error rate if too many noisy variants are present in the pathway. To fix this 

problem, some pre-processing methods of filtering noisy genetic variants are needed. 

Second, the LSKM test can only give an overall p-value for whether the pathway has a 

significant effect on the disease outcome. In practice, for a genetic pathway with significant 

effects on a phenoAn Adaptive Genetic Association Test Using Double Kernel Machines 3 

type, it is of interest to select important genes which drive the pathway effect.

The DKM approach we propose can address both these two issues. The DKM procedure 

utilizes two rounds of kernel machines. In the first round, we apply gene selection using the 

Garrote kernel machine (GKM) test of Maity and Lin (2011). For each gene in the pathway, 

we apply a GKM test and get a marginal p-value of that gene. A criterion is applied on those 

p-values to select a gene subset. In the second round, a LSKM test is performed on this 

selected subset, which gives an overall p-value of the pathway effect. Note that the 

information of the association between genes and the disease outcome is used twice, which 
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will lead to an inflated type I error rate. There are in general two ways to fix this issue. The 

first is to perform the subset selection on an independent dataset as Kwee et al. (2008) did in 

order to determine the weight of each individual genetic variant. The other way is to perform 

some permutation-based methods to establish the significance of the DKM procedure (Pan 

and Shen 2011). In this paper, we use the first approach.

The rest of the paper is organized as follows. In Section 2, we first discuss the kernel 

machine framework and then review the LSKM test and the GKM test. In section 3, we 

describe our DKM test, which is a two-stage adaptive association testing procedure. The 

criterion of subset selection is also discussed. In Section 4, we evaluate the DKM test with 

simulation studies and compare our test to LSKM. The performance of the subset selection 

using GKM test is also evaluated in this simulation. Then our method is illustrated using 

data on a gene, GRIN2B, that was implicated in some initial neuroimaging genomics studies 

of Alzheimer’s disease in Section 5. The paper concludes with discussion in Section 6.

2 Kernel Machine Score Tests

2.1 A Semiparametric Kernel Machine Model

In this paper, a kernel machine is a symmetric and positive definite bivariate function k : χ 

×χ → R; (x, y) ↦ → k(x, y). Here the positive definiteness implies the following, for any 

positive integer N and any set of distinct points {x1, · · ·, xN} ⊂ χ, the kernel matrix (Gram 

matrix)  is positive definite. The kernel machine serves as a powerful 

dimension-reducing tool for modeling complex genetic pathway effect on a disease 

outcome. The dimension reduction is achieved by collapsing the comparison of the 

multidimensional genetic variants vector into a scalar using the kernel machine. The scalar 

serves as a measure of similarity between pairs of individuals in term of gene expressions 

within a pathway. This kernel machine-based similarity measure can be incorporated to test 

to what extent variation in the level of similarity exhibited by pairs of individual can explain 

other features (like disease status or a particular quantitative phenotype) those individuals 

possess. Most applications of kernel machines (Liu et al. 2007, 2008; Kwee et al. 2008; Wu 

et al. 2010; Maity and Lin 2011) rely on two results.

The first is the “kernel trick”. Using a kernel machine k corresponds to mapping the data 

from the input space χ into a possibly high-dimensional inner product space  by a map Φ : 

χ →  and taking the inner product there. i.e.,

Φ is called the feature map associated with kernel machine k and  is called the reproducing 

kernel Hilbert space (RKHS) given that  is complete. The name RKHS comes form the 

following reproducing kernel property:
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for any f ∈ . More details about RKHS and reproducing kernel can be found in Aronszajn 

(1950). The “kernel trick” means that these high-dimensional dot products can be computed 

within the original space by means of a kernel machine without having to compute the 

mapping explicitly. One implication of the“kernel trick” is that we are able to deal with 

nonlinear algorithm in χ by reducing them to linear ones in . One of such example is the 

least square kernel machine (LSKM) regression in Liu et al. (2007).

Another important result is Mercer’s theorem (Cristianimi and Shawe-Taylor 2000). Under 

some regularity conditions, a symmetric positive definite kernel function k(·, ·) implicitly 

specifies a unique Hilbert functional space  spanned by a particular set of orthogonal basis 

functions . Then any function f(z) ∈  can be represented as a linear combination 

of those basis functions by . Moreover, according to Mercer’s theorem, 

we have a series expansion for the kernel k of the form

where s are the eigenvalues of an integral operator induced by the kernel machine k. 

Mercer’s theorem characterizes the structure of the Hilbert functional space  spanned by 

kernel machine k. Every function in  can be expressed as a linear combination of the basis, 

which is called the primal representation. Equivalently, there is a dual representation which 

express each function f in  as a linear combination of the kernel as

for some x1, . . ., xL ∈ χ.

One of the most commonly used kernels is the Gaussian Kernel k(x, y) = exp{−ρ−1||x–y||2}, 

where ρ is a positive parameter and || · || is the L2 norm. The Gaussian kernel generates the 

function space spanned by radial basis functions (RBF) and ρ is called bandwidth or shape 

parameter in literature. See Bühmann (2003) for more details. Another widely used kernel is 

the dth polynomial kernel given by k(x, y) = (xT y+ρ)d, where ρ ≥ 0 and d is a positive 

integer. One example in this family is the linear kernel: k(x, y) = xT y + ρ. Other examples of 

kernel machine include the spline kernel, ANOVA kernel, tree kernel and graph kernel 

(Hofmann et al. 2008).

Suppose our data (yi, xi, zi) are a random sample from n individuals. Let yi be some 

quantitative phenotypic traits like body mass index (BMI) and blood pressure, which are 

continuous, xi be clinical covariates with dimension q, like age and gender. And zi be the 

genetic covariates with dimension p, like gene expressions within a pathway. Then we focus 

on the partial linear model in this paper:

Zhan et al. Page 4

Stat Biosci. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(1)

where β is a q × 1 coefficients, f(·) is an unknown smooth function and ε are iid N(0, σ2) 

errors. Without loss of generality, we assume that the intercept β0 is included with the 

clinical covariates X instead of f(·). Moreover we assume that the nonparametric function f(·) 

lies in a RKHS generated by a kernel machine k(·, ·). Note that the RKHS is totally 

determined by the reproducing kernel, i.e., the choice of kernel function k determines the 

form of function f in the RKHS. So if one is interested in a linear form of function f, he can 

pick the kernel to be the linear kernel. The Gaussian kernel can be chosen if one is interested 

in a nonlinear relationship between y and z. As shown in model (1), the quantitative 

phenotype y depends on the genetic variants z through the function f and the pathway effect 

is tested via testing f(·) = 0.

2.2 LSKM Test of A Pathway Effect

Given observations , as shown in Liu et al. (2007), a LSKM estimator of β in 

(1) is obtained as

(2)

where λ is a tuning parameter which controls the tradeoff between goodness of fit and 

complexity of the model, K is the n × n Gram matrix with Kij = k(zi, zj ), 

and y = (y1, . . ., yn)T . The estimated function f(·) evaluated at the observed points z1, . . ., zn 

given by

(3)

For an arbitrary z, function f(·) is evaluated as

(4)

Note that (2), (3) and (4) involve the unknown tuning parameter λ and possible kernel 

parameters ρ. Moreover any inference or evaluation of those LSKM estimators also relies on 

the residual variance σ2. Estimation of those parameters is proceeded in the following way. 

Model (1) can be written as the following linear mixed model:

(5)

where Y is the response vector and X is the input matrix of clinical predictors. F ≡ 

(f(z1), . . ., f(zn))T is a n×1 vector of random effects from a multivariate normal distribution 

with mean 0 and covariance matrix σ2λ−1K and E is the error vector. It has been shown that 

the best least squares unbiased estimators of the fixed effects β and random effects F in (5) 

correspond with (2) and (3) (Liu et al. 2007). Note that the likelihood function of model (5) 
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is a function of (λ, ρ, σ2). Therefore one way to estimate (λ, ρ, σ2) is via restricted maximum 

likelihood (REML, Harville 1977).

To test the effect of the genetic pathway in the LSKM framework, we test H0 : f(·) = 0 in our 

model (1). By the equivalence of the kernel machine model (1) and linear mixed effects 

model (5), the test of f(·) = 0 is equivalent to that of the variance component in the mixed 

effects model being 0. Thus is suffices to test τ ≡ σ2λ−1 = 0. The hypothesis H0 : τ = 0 is 

tested as a variance component score test in a unified (restricted) maximum likelihood 

framework. Readers can refer to Liu et al. (2007) for more details.

2.3 GKM Test of A Gene Effect Within A Pathway

Suppose the genetic pathway consists of p genes z1, . . ., zp. The LSKM test is able to test 

whether there is an effect of this whole pathway on the outcome y. To test the effect of a 

given gene in the pathway, we applied the GKM test in Maity and Lin (2011). A basic idea 

is that each time we remove one gene out of our model and then fit the reduced model. 

Comparing the fit of the full model and reduced model, a bigger difference indicates a more 

important gene has been removed from the full model. Let us take z1 as an example. The test 

that z1 has no effect is H0 : f(z1, · · ·, zp) = f(z2, · · ·, zp), where f is the function in equation 

(1). A functional z1 will tend to lead to a rejection of the null hypothesis. Maity and Lin 

(2011) conducted the test by introducing a nonnegative parameter δ which they called a 

garrote parameter. Then z1 is replaced by , and the corresponding new kernel is termed 

garrote kernel machine Kg with an extra parameter δ. In this setting, the original test is 

equivalent to the test . Like LSKM test, this new hypothesis  is tested in a 

mixed effects model framework as a variance component score test. See Maity and Lin 

(2011) for more details.

The GKM test can evaluate a particular gene’s effect, so we can use the test to delete non-

functional genes in the pathway. It has been observed in the genetic association test 

literature that the association signal decreased with adding non-associated genetic variants 

(Wessel and Schork 2006; Wu et al. 2009, 2010). It may thus be helpful in detecting the 

association by first using GKM to select a subset of the pathway and then performing the 

LSKM test on the reduced gene-set. Wu et al. (2009) proposed the sLDA which is based on 

a lasso algorithm to select the genes in the composite expression value, which is shown to 

have good performance in the linear case. However, the lasso-based sLDA method does not 

allow selection of features in a nonlinear genetic model with possible gene-gene 

interactions. GKM provides a perfect solution to this issue. Besides the advantage of not 

requiring a strong parametric assumption (like linearity in sLDA), the GKM test has 

addtional advantages. First, the test H0 : f(z1, · · ·, zp) = f(z2, · · ·, zp) may be a high or even 

infinite-dimensional problem while the test  is only an one-dimensional testing 

problem. Second, there is a decrease in degrees of freedom due to the fact that GKM takes 

the correlations among genes into account, which boosts the power of the test as shown in 

simulation studies in Maity and Lin (2011).
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3 DKM procedure

The DKM procedure we propose in this section can be taken as an adaptive version of the 

LSKM test to accomplish the dual goals of gene selection and testing genetic pathway 

effects. Suppose the pathway contains p genes. The DKM procedure works as follows. First, 

we apply the GKM test to each gene and obtain p p-values. Next, a certain criterion is 

applied to the p-values to select a subset of m genes. Finally, we apply the LSKM test on 

this new pathway consisting of the selected m genes. Since the GKM and LSKM tests have 

already been discussed, the most important aspect in DKM is the selection criterion. The 

essence of DKM is based on a technique called subset testing (Neyman 1937; Fan 1996; 

Kim and Arkitas 2011), which we now describe.

Neyman first used subset testing in a multivariate normal testing problem. Let X ~ N(θ, Ip) 

be a p-dimensional normal random vector. We want to test H0 : θ = 0 against H1 : θ ≠ 0. Let 

Xj and θj be the j-th component of X and θ respectively. When the dimensionality is high, 

testing all dimensions would accumulate stochastic errors which may deteriorate the 

performance of the testing procedure (Neyman, 1937). Instead, Neyman proposed testing the 

first m dimensions of subproblem. That is, H0 : θ1 = . . . = θm = 0, leading to the test 

statistics . This Neyman adaptive test is a kind of truncation test, for any 

dimensions larger than m are not considered. If there is some evidence showing that large s 

are located at small j′s, then the Neyman test may be an ideal choice to test such a problem. 

Inspired by the truncation test, related tests like the thresholding test (Fan 1996) and order-

thresholding test (Kim and Arkitas 2011) have been proposed. The thresholding test selects 

those dimensions with  values larger than some certain threshold value c and the order-

thresholding selects those dimensions with k largest  values. Both c and k can be 

estimated in a data-driven way.

These three techniques (truncation, thresholding and order-thresholding) are all possible 

candidates of the selection criterion in our DKM procedure. The truncation test may not be a 

good choice in our genetic association test framework since we have no idea of the location 

of functional genes in a pathway. Thresholding and order-thresholding seem to be more 

reasonable. Note that in both Fan (1996) and Kim and Akritas (2011), the assumption of 

independence across individual hypotheses is made. However, this independence 

assumption is violated in p GKM tests, since a GKM test for one gene uses all information 

contained in the rest (p–1) genes and there is a overlap of (p–2) common genes in two GKM 

tests. Some adjustment is needed before applying order-thresholding or thresholding. 

Examples include Monte Carlo-based method (Lin, 2005) and Bonferroni correction based 

on the effective number of independent tests (Nyholt, 2004). Here we make an assumption 

that such an adjustment is monotone in p-values, which may be reasonable. Let’s consider 

this in a multiple testing framework. Bonferroni method works in the case that individual 

tests are correlated. The adjustment is that we divide each individual p-value by the effective 

number of independent tests, which is of course monotone in p-values. Under this monotone 

adjustment assumption, it preserves the order of the p-values and there exists another 

threshold value which keep the same set of genes above (below) it.
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One more issue is the estimation of cutoff point c in the thresholding method and the 

selected order k in the order-thresholding method. Note that the subset selection in DKM is 

directly performed on GKM p-values instead of GKM test statistic. This is because GKM 

test for different genes can yield test statistics that are dramatically different or even in 

completely different scale. The biggest difference of p-values and the normally distributed 

X’s as considered in Fan (1996) is that p-values are bounded in [0,1]. Hence the suggestion 

of estimating cutoff value c made in Fan (1996) is not valid in our case. However, there is 

no such issue in Kim and Akritas (2011) because they considered the order. An suggestion 

of estimating k data-adaptively is given by Kim and Akritas as follows. First, order the p 

GKM p-values from smallest to largest. Then pick the smallest  p-values/genes, where 

 is given by

where n is number of individual tests, Gn is the empirical cdf of the p-value vector P = 

(P1, . . ., Pn), the Pi’s are the p-values of the ith GKM test, and λ is the median of the Pi’s.

Finally, as observed in Kwee et al. (2008), if the GKM and LSKM tests are performed on 

the same dataset in our DKM procedure, it will lead to anticonservative tests. The first stage 

of GKM test is like training the model. If both GKM and LSKM are applied on the same 

dataset, then the supervised learning in GKM will lead to inflated type I error rate of the 

LSKM test on the second stage. Hence we strongly recommend that the first stage of GKM 

tests to be performed on some other independent datasets. Kwee et al. (2008) also discussed 

the availability of such independent datasets. Those datasets serve as some prior knowledge 

of the underlying genetic model. For some reason, if such information is not available, we 

recommend another permutation-based method to establish the significance of our DKM 

procedure. First, we apply both GKM and LSKM test on the original dataset. Denote the p-

value of the LSKM test on the subset pobs. Second, we randomly shuffle y and x to yield a 

permuted version dataset {y(b), x(b), z}. DKM is performed on this permuted dataset and 

denote the p-value of LSKM test on this permuted dataset p(b). We repeat this process for b 

= 1, . . ., B times and the final p-value of DKM is . Such an approach 

was used in Pan and Shen (2011) and was shown to be able to protect the type I error rate. 

However, the drawback is the computational cost, since permutation requires re-estimation 

of the kernel matrix (both GKM and LSKM), parameters and so on.

4 Simulations

In this section, two sets of simulation studies were conducted. One was to compare the 

performance of testing-subset selection of thresholding and order-thresholding. The other 

was to compare the performance of LSKM test and DKM test in the presence of noisy 

variables. For a purpose of comparison, the way we generated our simulated data was 

similar to that in Liu et al. (2007). Kernel selection is an important issue in the kernel 
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machine literature; however we do not pursue this goal in this paper. Throughout this 

simulation, the Gaussian kernel and the linear kernel were used.

4.1 Simulation Study I

In this part, we compared the selection performance of thresholding and order-thresholding. 

Our simulated data were generated from the following semiparametric model:

(6)

where ε ~ N(0, 1), zij ’s were generated from Uniform(0,1). To allow for clinical covariates x

′s and genetic covariates z′s being correlated, xi was generated as xi = 3cos(zi1) + 2εi where 

εi were iid standard normal errors. The nonparametric function f(·) was allowed to have a 

complex form with nonlinear functions of z′s and interaction among the z′s. In this 

simulation study, the true model was given by:

(7)

The sample size was n = 60. In practice, the pathway will also contain nonfunctional genes. 

To mimic such a scenario, some noisy z′s were added in the simulation. Two different 

situations were considered. The first set of simulations contained p = 10 genes and the 

second set of simulations contained p = 20 genes. We assumed that the first 5 genes were the 

functional ones. Simulations were run on 100 datasets. For each dataset, certain genes were 

selected. We used Ni, i = 1, . . ., p to denote the number of times that gene i being selected. 

Figure 1 (Gaussian kernel) and Figure 2 (linear kernel) presented the histograms of those 

count variables.

Based on both figures, order-thresholding outperforms thresholding. An interesting finding 

in both order-thresholding and thresholding is that, even though gene 3 is a functional gene 

in our simulation model (7), the strength of the association between the outcome and gene 3 

is so weak that most times it is not selected. Regarding the issue of cut-off value of the 

thresholding procedure, the formula suggested in Fan (1996) does not work in our case 

because of the boundness of p-values, unlike the normal distributed test statistics in Fan 

(1996). We tried different values in our simulation and the results presented in the figures 

corresponds to a value of 0.05. That is, any genes with a GKM p-value smaller than 0.05 are 

selected in the subset used for the LSKM test on the second stage. Basically, if a higher cut-

off (say, 0.1) is used, then the frequency of non-functional genes being selected would be 

larger and if a lower (say, 0.01) cut-off is used, then N1, . . . N5 would be smaller. No matter 

which value we picked, the comparison between thresholding and order-thresholding is 

similar. We can not find a cut-off value c such that thresholding outperforms order-

thresholding in terms of subset selection. Hence, we choose order-thresholding as the subset 

selection criterion in our DKM approach in the simulations which follow.

4.2 Simulation Study II

In this section, we compared the type I error rate and power of our DKM test with those of 

the LSKM test. Both tests were performed at a bunch of ρ values as in Table 4 of Liu et al. 
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(2007). In order to calculate the power of the test, we need to specify the alternatives. In this 

simulation we used the same testing structure as Liu et al. (2007) for a purpose of 

comparison. This testing setting was given by: f1(z) = af(z) where f was given in (7) and a = 

0, 0.2, 0.4, 0.6, 0.8. Under this setting, we studied size of the test by generating data under a 

= 0 and power of the test by generating data under nonzero a’s. In order to preserve the type 

I error rate of DKM test, we performed the GKM-based gene selection and LSKM-based 

score test on two separate datasets. The results in the previous simulation section can be 

used as prior knowledge of the underlying genetic model. Based on the results shown in 

Figure 1 and Figure 2, we were confident to pick the testing-subset to be {1, 2, 4, 5}. For 

each a value, we generated 1000 datasets from the underlying model (7). The numerical 

empirical type I error rate and power were reported in Table 1 and Table 2. The a = 0 

column is the empirical type I error rate and the non-zero a columns are the power.

For the Gaussian kernel, we can see that when ρ is small, the LSKM test is invalid since it 

has inflated type I error rate. Its type I error when ρ = 0.5 and p = 10 is 0.093 which is larger 

than the nominal level 0.05. The type I error of the LSKM test at ρ = 0.5 when p = 20 is 

even as high as 0.819. To explain the poor performance, we first note that association tests 

using kernel machines are effective when the kernel serves as a similarity measure between 

individuals. Note that the Gaussian kernel is given by:

If the dimensionality p is high and ρ is small, then k(x, y) → 0 for each individual pairs (x, 

y). That is each pair of individuals tend to be orthogonal to each other under such a 

similarity measure. For such a scenario (big p small ρ), the Gaussian kernel fails to provide a 

proper similarity measure between individual pairs. That explains why LSKM test fails. 

DKM, on the other hand, reduces the number of features from p to m and hence is able to 

alleviate the inflated type I error rate issue.

For the linear kernel , it can be seen in Table 2 that the test is not 

affected by the value of ρ (See the appendix for a proof of this result). Moreover, a similar 

pattern of inflated type I error rate at the presence of noisy variables is also observed. At p = 

20, the empirical type I error rate is 0.069, higher than the nominal level 0.05. Applying our 

DKM procedure, this can be reduced to 0.053. The effect of increasing dimension on a 

linear kernel does exist, even though it is not as huge as that in a Gaussian kernel. The 

explanation why dimension makes a difference in a linear kernel is similar to that in a 

Gaussian kernel. Suppose x, y and z are three arbitrary p-dimensional measurements. When 

p is large, k(x, y), k(x, z) and k(y, z) will all be large. Hence k can not serve as an effective 

similarity measure to tell different measurements. By reducing the dimension, the 

differences among k(x, y), k(x, z) and k(y, z) will be relatively larger, hence, it is easier to 

distinguish different measurements.

To summarize, LSKM fails to protect the type I error rate and suffers from power loss in the 

presence of noisy variables. On the other hand, DKM can largely reduce the type I error rate 
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of a corresponding LSKM test and have higher power in the same scenario. DKM performs 

much better than LSKM in the presence of noisy variables. The more noisy variables, the 

bigger the difference in performance between DKM and LSKM.

5 Application to GRIN2B Data

In the previous sections, we illustrated how our DKM procedure can be applied to pathway 

studies. The proposed method can be directly extended to other gene-based analysis like 

genome-wide association study (GWAS) (Wu et al. 2010). The set aggregation can be 

performed at other levels besides genetic pathways, like exons, SNPs-set and LD blocks. As 

a motivating example, we consider data from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI). A description of the study data and acknowledgment of investigators can 

be found in Appendix. In an earlier study, Stein et al. (2010) found that one SNP located in 

the GRIN2B gene is related to Alzheimer’s disease. Motivated by their study, we extracted 

SNPs based on the physical position of gene GRIN2B from National Center for 

Biotechnology Information (NCBI). We extracted the SNPs from 13714kb to 14133kb and 

found 119 SNPs. The raw dataset contained missing values in the SNP variables, so mean 

imputation was used to complete the dataset.

In this study, 4 clinical covariates were collected on 741 subjects. Those covariates were 

disease status based on baseline diagnosis, disease status based on 24 month later diagnosis, 

sex and age. We excluded the post-diagnosis disease status variable because of high 

missingness. The disease status based on baseline diagnosis had three levels: 1=normal 

control, 2=mild cognitive impairment (MCI) and 3=Alzheimer’s disease (AD). We created 2 

indicator variables DS1 and DS2 to denote the effect of MCI and AD, respectively. The 

response variable was structural MRI expression from 119 regions of interest (ROI). To 

simplify the analysis, we computed the first standardized principal component of those 119 

ROIs and used it as our response variable in the analysis. The goal was to evaluate whether 

the set of 119 SNPs for GRIN2B had an effect on ROI after adjusting for three covariates: 

disease status, sex and age. The model in this analysis was given by:

(8)

where h(·) was a nonparametric function in a functional space spanned by a certain kernel 

machine. In this GRIN2B data analysis, the Gaussian kernel and the linear kernel were used. 

We used both the LSKM and DKM method to fit model (8) and to test the SNP-set effect of 

h(·) = 0.

On the first stage, GKM tests were used to select a subset of the SNPs as the testing-subset. 

On the second stage, a LSKM score test was performed on this testing-subset. As discussed 

in the last paragraph in Section 3, in order to deal with the issue of inflated type I error rate 

and to avoid computationally expensive permutation methods, we split the data set into a 

training set and a test set. The training set was used in the GKM stage to determine which 

SNPs should be included in the testing-subset. The test set was used for the score test at the 

second stage. An issue was that different splits lead to different training sets, which further 

resulted in different testing-subsets. To fix this issue, we repeated the process of subset 

selection 100 times on different training sets to get a more stable result. The analysis was 
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conducted in the following way. First, we split the 741 samples into a training set and a test 

set. We randomly chose 100 individuals as a training set pool. The remaining 641 

individuals formed the test set. Second, each time we picked 60 of the 100 individuals as a 

training set to perform the GKM test, and repeated it 100 times. Each time we obtained 119 

marginal p-values for each individual SNP and picked kn SNPs based on those p-values 

using the formula mentioned in Section 3. Third, we decided the final testing-subset based 

on these 100 runs. More details can be found in the next paragraph. Last, a LSKM test was 

conducted using the 641 samples in the test set.

Figure 3 presented the empirical distribution of s. The range of kn in a Gaussian kernel 

model was [10, 59] while that of a linear kernel was [10, 20]. The empirical distribution of 

kn in a linear model was more concentrated than that in a Gaussian kernel. This makes 

intuitive sense because the functional space spanned by a linear kernel is much simpler than 

that of a Gaussian kernel. Based on these empirical distributions, the final optimal  is 

determined as the 90th percentile of the empirical distribution. We counted the number of 

times each SNP being selected in total out of those 100 runs and picked the top  SNPs to 

form the testing-subset. For the Gaussian kernel , and for the linear kernel . 

The qq-plot of marginal GKM p-values of each SNP based on the whole training set was 

also presented in Figure 4. The deviations from the straight line were mostly minimal. 

Hence, the marginal p-values were basically distributed as Uniform(0,1).

SNP rs11055612 was found to be significant in Stein et al. (2010). We found that this SNP 

was included in the 39-SNP set in our Gaussian kernel model. However it was not in the 11-

SNP set in our linear kernel model. A possible explanation is that data analyzed in Stein et 

al. (2010) included only one ROI while we used the first principal component from 119 

ROIs. In a linear kernel model, the number of times SNP rs11055612 being selected ranked 

the 16th largest out of all 119 SNPs (the corresponding rank was 13th in a Gaussian kernel), 

which was close to the top 11 SNPs finally being selected in the testing-subset. Moreover, 

all 11 SNPs selected by a linear kernel were included in the 39-SNP set selected by the 

Gaussian kernel. This is reasonable because the functional space spanned by a Gaussian 

kernel is very general and can have a linear function as a special case. On the second stage, 

we performed kernel-based score tests on the selected SNPs subset. Results of those tests are 

reported in Table 3 and Table 4.

In Table 3 and Table 4, the estimates of those clinical covariates were based on the samples 

in the test set. The S.E. column was calculated based on the formulas in Liu et al. (2007). 

For the LSKM test of h(·) = 0, we used the estimate of ρ based on the training set. In Table 

3, the DKM based standard errors of clinical covariates were much smaller than those of 

LSKM, which further resulted in much smaller p-values for the clinical covariates. 

However, such a phenomenon was not observed in Table 4 when a linear kernel was used. 

In a linear kernel model, h(SNP1, . . ., SNP119) = α1SNP1 + · · · + α119SNP119. Model (8) is 

quite simple and the reduction in the dimension of SNPs has little effect on the covariance of 

the clinical covariates part. In a Gaussian kernel model, h(SNP1, . . ., SNP119) can be much 

more complicated, including many interactions and nonlinear terms. By reducing the 

dimension of SNPs, we are fitting a much simpler model in DKM than in LSKM. Issues like 

Zhan et al. Page 12

Stat Biosci. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the multi-collinearity and confounding are less likely to happen in DKM model. This 

explains why p-values of the clinical covariates in DKM are much smaller than that in 

LSKM. Another interesting founding is the p-values of the SNP-set. In Table 3, both p-

values of LSKM and DKM are small and they are close. However, in Table 4, they are 

larger and the difference are also much larger. A possible reason is that a Gaussian kernel is 

able to capture a general relationship while a linear kernel can only works well when the 

linearity assumption holds. In this GRIN2B data, a linear kernel may fail to capture the 

effect of the SNPs on both stages of DKM. Some goodness of fit tests may be applied to test 

which kernel is better for this data; however this topic of kernel selection is out of the scope 

of this paper.

Our DKM method analyzed the GRIN2B data in a different way from Stein et al. (2010). In 

Stein et al. (2010), the authors performed an individual analysis and only one SNP survived 

the stringent multiple testing correction. However, in our DKM approach, we found a much 

bigger SNP-set, which largely improved the chance to detect the causal SNPs. After that, a 

kernel-based score test was performed to test whether this SNPs-set was associated with the 

phenotype. Further laboratory studies are required to explore a detailed relationship between 

the SNPs-set and the phenotype.

6 Discussion

In this paper, we have proposed an adaptive approach based on double kernel machines for 

assessing genetic pathway effect. This DKM method is particuAn Adaptive Genetic 

Association Test Using Double Kernel Machines 17 larly attractive in settings where the 

signal is moderate, that is, a few genes are functional or informative, contributing to a 

pathway’s significant effect, while others show little change relative to the noisiness of the 

data. The key advantage of DKM is that it can select informative genes within a pathway 

that drives the effect and then test for the significance of the pathway effect with improved 

power by eliminating non-informative genes. We illustrated the powerful results of the 

DKM test for detecting the pathway effect and gene selection within the pathway using both 

simulations and the GRIN2B data. All these numerical studies show that our DKM method 

has a good performance.

The motivation of introducing DKM is that we observed LSKM test being invalid in the 

presence of noisy variables especially in high-dimensional settings. The first stage of DKM 

serves as a dimension-reduction tool to solve such a potential issue in LSKM. Comparing 

with other similar tools like sLDA (Wu et al. 2009), the GKM has its advantages and 

perfectly fits within the kernel machine framework, as the order thresholding is able to select 

the true signals in our simulation studies in Section 4. Liu et al. (2007) also considered this 

problem. In their prostate cancer genetic pathway data analysis, they considered the 

performance of all possible 2p subsets, which is practically infeasible when p is large. In the 

ultra-high dimensional case, computational cost becomes an issue, because the DKM 

approach requires a garrote kernel machine test on each dimension. We recommend that one 

can first apply some fast dimension reduction or variable selection methods like screening 

(Fan and Lv, 2008), then use our DKM procedure for a testing purpose.
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The DKM approach utilizes the same aspect of association information on its two stages. It 

is possible to get an inflated type I error rate. Pan and Shen (2011) proposed a permutation-

based method to fix this issue. However, we strongly advocate that two stages of DKM 

should be performed on separate datasets to avoid the time-consuming permutation process. 

Another possible way to save the computing time is via parallel computing. Because the 

GKM test of each gene is independent in the sense that it does not rely on the result of other 

GKM tests. Hence we can break the whole genetic-set into several pieces and perform the 

first stage of GKM test in each piece simultaneously.

In this paper, we focus on a kernel machine model with a continuous outcome. Kernel model 

for binary and censored outcomes have also been developed in Liu et al. (2008) and Cai et 

al. (2011) respectively. It is possible to develop adaptive versions of such tests like what we 

did for the continuous outcome in this paper. Another issue involves kernel selection. There 

are also many papers using models based on other kernels. In this paper, we illustrate our 

DKM method using a Gaussian kernel and a linear kernel as two examples. It is of interest 

to know which kernel can have a best performance in this DKM approach. We leave these 

extensions for future work.
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Appendix

A.1: Least squares kernel machine score test based on linear kernels

In this section, we prove that different linear kernels k(x, y; ρ) = xT y + ρ lead to the same 

LSKM score test. First let us recall the LSKM score test proposed in Liu et al. (2007). The 

test statistic of a LSKM score test is Q(β̂, σ̂2, ρ) where

β̂ and σ̂2 are the MLEs of β and σ2 under the null model y = xβ + ε. Liu et al. (2007) used a 

scaled chi-squared distribution  to approximate the distribution of Q( β̂, σ̂2, ρ), where a 

and b are determined by matching the moments of Q and the scaled chi-squared distribution. 

It is easy to see that a = V ar(Q)/2E(Q) and b = 2E2(Q)/V ar(Q). Let X be the design matrix 

for the clinical covariates and Kρ be the kernel matrix, which depends on kernel parameter ρ. 

Denote P0 = I – X(XTX)−1XT . Then according to Liu et al. (2007):

(9)

Now consider two arbitrary linear kernels k(x, y, ρ1) and k(x, y, ρ2). Let Qi, Ki, ai and bi be 

some quantities corresponding to kernel i, i = 1, 2. Let A ≡ (1, . . ., 1)T . Then it is easy to 

see K2 = K1+(ρ2–ρ1)AAT . Moreover, P0 = X⊥, where X⊥ denotes the projection matrix 
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to the orthogonal complement of the space spanned by the columns of X. Note that A is the 

first column of X (we assume that the intercept is contained in the clinical part). Hence P0A 

= X⊥A = 0. Therefore,

Plugging these results back to Eq. (9), one can show that E(Q2) = E(Q1) and V ar(Q2) = V 

ar(Q1). Hence a2 = a1 and b2 = b1. Because the residuals of the null model y = xβ + ε sum to 

0, one can easily show that Q2 = Q1. That is, both the LSKM score test statistic and the null 

distribution of the test statistic are identical for two arbitrary linear kernels k(x, y, ρ1) and 

k(x, y, ρ2). Therefore, all linear kernels lead to the same LSKM score test.

A.2: Description of ADNI data

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). The ADNI was launched in 

2003 by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging 

and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private 

pharmaceutical companies and non-profit organizations, as a $ 60 million, 5- year public-

private partnership. The primary goal of ADNI has been to test whether serial magnetic 

resonance imaging (MRI), positron emission tomography (PET), other biological markers, 

and clinical and neuropsychological assessment can be combined to measure the progression 

of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). Determination of 

sensitive and specific markers of very early AD progression is intended to aid researchers 

and clinicians to develop new treatments and monitor their effectiveness, as well as lessen 

the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical Center 

and University of California San Francisco. ADNI is the result of efforts of many co-

investigators from a broad range of academic institutions and private corporations, and 

subjects have been recruited from over 50 sites across the U.S. and Canada. The initial goal 

of ADNI was to recruit 800 subjects but ADNI has been followed by ADNI-GO and 

ADNI-2. To date these three protocols have recruited over 1500 adults, ages 55 to 90, to 

participate in the research, consisting of cognitively normal older individuals, people with 

early or late MCI, and people with early AD. The follow up duration of each group is 

specified in the protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally recruited 

for ADNI-1 and ADNI-GO had the option to be followed in ADNI-2. For up-to-date 

information, see www.adni-info.org.

A.3: Acknowledgments to ADNI
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Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904). 
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Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; BioClinica, Inc.; Biogen 

Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly 

and Company; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; GE 

Healthcare; Innogenetics, N.V.; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research 

& Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; 

Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; 

Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Synarc Inc.; 

and Takeda Pharmaceutical Company. The Canadian Institutes of Health Research is 

providing funds to support ADNI clinical sites in Canada. Private sector contributions are 

facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The 

grantee organization is the Northern California Institute for Research and Education, and the 

study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of 

California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at 

the University of California, Los Angeles. This research was also supported by NIH grants 

P30 AG010129 and K01 AG030514.
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Fig. 1. 
Histograms of number of times each gene being selected (N1, . . ., Np) when the Gaussian 

kernel is used.
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Fig. 2. 
Histograms of number of times each gene being selected (N1, . . ., Np) when the linear kernel 

is used.
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Fig. 3. 

Empirical distribution of the number of SNPs s being selected each time. The left panel is 

for the Gaussian kernel and the right panel is for the linear kernel.

Zhan et al. Page 20

Stat Biosci. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
QQ-plot of marginal p-values from GKM tests. The y-axis is sample quantiles and the x-axis 

is theoretical quantiles of the Uniform (0,1) distribution. The left panel is for the Gaussian 

kernel and the right panel is for the linear kernel.
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Table 3

LSKM and DKM on the GRIN2B data using a Gaussian kernel.

Method Variable Estimate S.E. P-value

LSKM

Intercept -4.59 2.33 0.05

DS1 0.17 0.37 0.64

DS2 1.30 0.36 0.0003

Sex 0.13 0.30 0.68

Age 0.05 0.02 0.02

h(·) . . 0.041

DKM

Intercept -2.78 0.52 1.72e-7

DS1 0.24 0.08 3.21e-03

DS2 0.63 0.09 1.55e-11

Sex -0.32 0.07 5.09e-06

Age 0.04 0.005 4.53e-14

h(·) . . 0.067
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Table 4

LSKM and DKM on the GRIN2B data using a Linear kernel.

Method Variable Estimate S.E. P-value

LSKM

Intercept -2.87 0.46 2.88e-10

DS1 0.21 0.09 0.02

DS2 0.63 0.10 7.49e-10

Sex -0.30 0.08 8.68e-5

Age 0.04 0.005 1.76e-13

h(·) . . 0.180

DKM

Intercept -2.83 0.44 1.45e-08

DS1 0.20 0.09 0.02

DS2 0.62 0.10 1.22e-9

Sex -0.30 0.08 7.39e-5

Age 0.04 0.005 1.91e-13

h(·) . . 0.695

Stat Biosci. Author manuscript; available in PMC 2016 October 01.


